How do I use DNA in my research? |
 |
Traditional genealogy research uses probabilities.
A birth certificate is considered very good evidence, but it's not an
absolute proof. Information
is collected and given a relative value based upon how much it is believed
the data can be
trusted. DNA is also based on probabilities, but it's not susceptible
to forgery or alteration. It can't be misplaced and there's no chance
of a transcription error. |
|
Genealogical research is normally an attempt to prove
a lineage. This is done by collecting documents or oral statements
attesting to a person being the child of someone else.
- The odds the lineage is true is high if the evidence is good.
- If the evidence is poor, the odds the lineage is true is low.
(Click here to read
about genealogical proofs).DNA research works in a similar manner --
the evidence is weighed to give a probability of relationship. But
it's not like a birth certificate or Bible record. The reason is that
many people might have the same DNA signature. So, DNA information
must be compared to that of others to see if they match. If a match
occurs, it is then necessary to include the traditional methods (paper
trail, etc.) to prove the DNA signatures are descended from the same line.
- If a match is not found, no relationship exists.
- If a match is found, and there is supporting evidence the two
people are from the same lineage, the DNA data can then provide a powerful
tool to narrow the scope of the search to particular branches of the family
and to specific time periods in which their common ancestor lived. |
 |
Traditional genealogy research is based on
probabilities. |
|
- The odds a person is descended from another person
is high if a birth certificate exists.
- The odds a person is a child of someone else is high if the mother or a
witness to the birth says it.
- The odds a person is a child of someone is low if there is no supporting
evidence for it. |
 |
Genealogical DNA research is also based on
probabilities. |
|
- The odds two unrelated people will have the same DNA
signature are low -- but possible.
- The odds two people are related decrease as the differences in their DNA signature
grow larger.
- The likelihood of two people being related are high if they share the same
DNA signature.
- The likelihood two people are related are very high if they (1) share the
same DNA signature and (2) share the same surname.
Data from DNA testing is an adjunct to genealogical data. Perhaps
the most significant adjunct to DNA data is the surname. Having the same
surname does not imply a relationship, but a close DNA match along with the
same surname virtually ensures it.
DNA data, coupled with traditional genealogical evidences can effectively
prove a relationship. |
 |
DNA proofs are based upon comparison of DNA samples of
two or more people. Since it is unlikely a sample will be available of
a distant ancestor, samples of living people are compared. The typical
scenario is for people who have a DNA match to compare their ancestral genealogies
to see if they might be related. If it appears they could be related,
further investigation for genealogical proofs is undertaken. In this way
the scope of the search is narrowed.
- The odds a relationship exists is low if the genetic distance is great (far
apart).
- The odds a relationship exists is high if the genetic distance is small (close
together).
- The odds a relationship exists is greatly increased if the same surname exists
between the comparison subjects.
- The odds a relationship exists is increased even further with supporting genealogical
evidence (e.g. the same surname, a supporting oral history, or other clues indicating
similar ancestries). |
What increases the probability of a relationship? |
|
- A close genetic match in the DNA test (small genetic
distance).
- Having the same surname.
- Any of the standard genealogical proofs (birth certificate, oral tradition,
census, etc.)
|
|
|
How do you use the table of test results --
and what does it mean? |
 |
Click on one of the kit numbers to have it become the
standard of comparison to all the other kits. The fewer the differences
between kits, the more likely those people are to be related through a fairly
recent common ancestor. |
 |
To "refresh" the chart back to the default display
(without any comparison showing), click on the word "reset" at
the top of the left-most column. |
 |
What do the differences mean?
First, keep in mind
that we are all related -- it's just a matter of how long ago our "Most Recent
Common Ancestor" (MRCA) lived.
Everything in this
help and from the genealogical DNA sites is directed to finding a MRCA within
approximately the last 1,000 years. Prior to that there were no surnames,
making documentation and proof much more difficult. Statements about not
being related are predicated within this approximate 1,000 year time frame,
unless specifically stated otherwise.
Basically -- the fewer
the number of differences between two people, the more closely related they
are assumed to be. But DNA values can move toward one another, making
it appear two people are related when they are not. The weight given the
numeric difference shown in the far right column depends on (1) whether any other evidence
exists of kinship (such as a common surname or documentation) and (2) the number
of markers tested (the more markers, the more information to work with).
DNA evidence supports traditional evidence, it does not replace it.
A flaw in the design
of this table is that the difference value shown does not indicate how many
markers are being compared, and that is very important, because a difference
of 3 on 37 markers is not significant, but it is very significant if only for
12 markers.
Click here to see the team Liddell
Interpreting Your Test Results. |
 |
On a test of the first 12 markers, differences of 3 or
more are considered unlikely to be related unless there is a common surname
or other evidence to indicate kinship. Visit the Family Tree DNA Genetic
Distance FAQ links below for a better explanation.
FTDNA 12-marker
FAQ
For the 25 marker test, a difference of 4 or more is considered most likely
not related.
FTDNA 25-marker
FAQ
For the 37 marker test, a difference of 6 or more is considered very unlikely
to be related.
FTDNA 37-marker
FAQ |
|
- The Y-DNA 12-marker test examines
deep ancestry (up to 2,000 years or more).
- The Y-DNA 13 to 25-marker test examines more recent relationships.
- The Y-DNA 26 to 37-marker uses faster moving markers to provide even more
refinement of the results. |
|
Regarding large genetic distances.
|
|
DNA evidence is a statistical
probability: For example, your house is very unlikely to be struck
by a tornado. It can happen, but the probability of it happening is
very low. If two people have a large genetic distance between them,
they are not likely related within a useful genealogical time frame (about
1,000 years). But if they share the same surname, the likelihood of
kinship goes up dramatically. If they have a paper trail showing their
ancestors were from the same places and times, the likelihood increases
even further. If they can find a person they are both kin to, then
they have found their "missing link" and can infer relationship with each
other.
A large distance does not
prove no kinship exists, only that the probability of it is low.
The greater the distance, the less likely kinship exists. (Conversely,
a small genetic distance does not prove a kinship does exist either, as
it is possible for markers to move toward each other, but the probability
of kinship is much higher.)
Kinship can exist even if
the distance is large when the genetic material changes more quickly
than usually happens and/or when the changes occur in the same direction and away
from each other (see the theoretical family scenario below).
The probability a kinship exists
is increased if a surname is shared, or if there is documentation or family
history indicating kinship.
Larger-than-normal DNA genetic
distances can still validate a family relationship if the intermediate distance
movements can be located. This requires finding other branches that
are related and which have closer genetic distances -- finding the "in between"
cousin. In other words, two people who are 5 distances apart might
be related, but the probability is low. But, were each of those two
people to find one other person they both were only 2 markers distant from,
then they are probably related to that person and so are a little more likely
to be related to each other. If their family traditions indicate they
are both related to this person, the probability of kinship increases even
further. If they can find written documentation, then the amount of
evidence has raised the probability to the point of virtual certainty.
(See Cloud's Transitive Principle
of Kinship.)
The markers
in red move more quickly, so are given less weight. A distance
of 2 red markers might approximate an actual distance of 1 of the others
when analyzing the data (each marker has its own characteristics).
Some family lines experience
rates of change greater than the norm. One of the Cloud branches has
been proven to have a mutation rate much faster than the average.
As a family tree grows over
many generations, some of the branches may drift apart in DNA genetic distance. |
|
 |
So far, all of our project members fall into haplogroup
R1b. The haplogroup is an indicator of your ancient
ethnic origins and R1b indicates origins in Western Europe many thousands of
years ago. That particular group (R1b) has the least diverse DNA compared
to any other group because those peoples came from only a few groups and remained
isolated from others for centuries. This makes R1b the most difficult
to interpret, since all the descendants come from closely related lines.
Haplogroup R1b can expect to find matches with unrelated individuals more often
than the other groups. It is therefore more important for participants
in that group to be even more careful with their accompanying evidences. |
 |
One possible avenue of research are the collateral lines
our families lived and traveled with over the years. |
|
Click on the links below to see the CLOUD surname project
results compared to other surname project results. (There are stories
of the early Cloud family coming from the clan McCleod, and the Youngblood
family was one collateral line to ours. The Black family is shown
below because one of our Cloud lines changed their name to Black.
We can probably learn more from how distant these branches are from ours
than from anything else.) |
Click on a kit number to have it become the standard of comparison (using one of the modal values is recommended). The differences will be color-coded. Haplogroups in green have been confirmed with SNP testing. Haplogroups in red have been estimated from the STR data (the allele values under the DYS columns). |
U106+/S21 SNP |
|
The majority of our group belong to haplogroup R1b1b2g. This group is identified by a SNP named U106 (aka S21). It may have occurred 5,000 or more years ago. The "parent" haplogroup, R1b1, is believed to have originated about 20,000 years ago in Western Europe. Studies are underway to formulate the possible migration pattern of our sub-group and to determine where this group lived after the U106 mutation occurred. |
McLeod |
|
Many people believe that the Cloud family comes from the MacLEOD clan. A study of the MacLeod project shows that surname contains many unrelated families, which is common for Scottish surnames. If is possible one of these family groups is related to one of ours but there doesn't seem to be any evidence of it at this point. |
Black |
|
This family group is shown primarily because one of our Cloud families changed their surname to Black. No relationship is indicated, but viewing it might help one better understand the use of DNA and to get a feel for how far apart DNA signatures can be. |
Youngblood |
|
This family group is shown because it is collateral with some of our Cloud families. No relationship is indicated, but viewing it might help one better understand the use of DNA and to get a feel for how far apart DNA signatures can be. |
|
|
|
(Keep in mind that DNA research can give us ideas about
our more ancient ancestry too. It is helpful if test participants agree
to allow their test results to be put into the large
Y-Search database.
The Cloud Project Administrator
can help with doing that and can help you submit your paternal lineage gedcom
so that matching lines can look for clues.) |
 |
Members of haplogroup R1b often need to take more definitive
tests (i.e. 25 or 37-marker tests) and to have other members of their branch
(2nd, 3rd or 4th cousins) to also submit samples in order to better define their
base DNA signature and to show where any mutations have occurred. |
A brief explanation of DNA testing as used for
genealogical purposes. |
 |
The Y-DNA (passed from father to son) remains identical
for many generations, with virtually no changes occurring for about 10 generations
(250 years). This characteristic makes Y-DNA testing ideal for finding
closely related lines. (Ed. note -- based on
my own observations and correspondence with other project coordinators, this
is not true. Perhaps this refers to 12-marker "deep ancestry" markers
only, for several projects are experiencing numerous allele changes in lines
separated by 10 or less generations.) DNA was first used for
genealogical research in 1997 and in 2000 the first information on the rates
of change for the markers was identified. Though precise, the application
/ interpretation of the results is still being refined. |
|
-- Visit the
National Geographic Genographic Project. |
|
-- Visit the Blair surname project -
DNA 101. |
 |
Consider a theoretical family lineage: |
|
- Assume a man has three sons.
- Assume two of these sons have a mutation (change) in their y-DNA, each
in opposite directions (an unlikely, but possible, circumstance used to
illustrate a point).
- Now the father and one son have a perfect match, while the brothers are
one or two mutations apart -- called "genetic distance".
- during the next ten generations, at least one more mutation occurs, perhaps
two.
- The results of DNA testing the descendants of the tenth generation might
then show:
- one branch might be a perfect match with the first male ancestor.
- other branches may have genetic distances of 1 to perhaps 3 or 4, depending
on the direction and quantity of mutations.
|
 |
It is also possible for two unrelated lines to experience
mutations toward each other, causing confusion when they appear to be more closely
related than they are. |
How is DNA testing used in genealogical research? |
|
It can prove
that no relation exists.
It needs
supporting evidence to infer relationship.
It can validate
a paper trail -- but it cannot replace it.
It can indicate
with certainty where a relation does NOT exist. (This is very useful
in preventing wasted time and money searching the wrong line. It can also
prove very disappointing to people whose line is the result of a "false paternity",
an adoption, etc.)
It can provide
valuable information about which lines are closest and which warrant further
research.
It is very
inexpensive -- especially considering the time and money lost pursuing the wrong
line or lines. |
How is the testing done? |
|
A sample
of your DNA is obtained by scraping the inside of your cheek. It is sent
to the lab, processed and the results are returned to you.
If you are
part of a project, your results are also sent to the project coordinators.
Click here
to see the
DNA sample
kit contents. |
Should I be concerned about giving my DNA sample
to the lab? |
|
Perhaps.
Some companies may not exercise care in protecting your identity or your sample
results, though the information available from the tests is unlikely to compromise
your privacy.
The company
we have chosen (Family Tree DNA) has strictly enforced privacy policies.
Click here to read them.
Read the
Family Tree DNA
Privacy
FAQ here. |
Why should I join a surname project? |
|
You receive
a substantial quantity discount on the cost of the test.
You will
participate with others pursuing the same goal -- finding ancestral brick walls. |
How do I join a surname project? |
|
Click here to join the Cloud Surname Project. |
|
Click here to search for another surname project. |
How do I print the Results Page? How
do I print the colors on the pages? |
|
|
To print the DNA Results page from your browser: |
|
- Print Settings -- set to Landscape mode
- Set browser to print background colors (see below):
|
|
- Internet Explorer:
Tools > Internet Options > Advanced > Printing > Print background colors & images)
|
|
-
FireFox:
File > Print Preview > Page Setup > Format & Options > Print Background (colors & images)
|
|
DNA testing helps find ancestral
ties,
and provides validation for other evidence. |